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What is constructive algebra?

Constructive algebra is algebra without nonconstructive principles
(e.g., excluded middle, Zorn’s lemma, ...).

Constructive proofs have computational content. They can be
regarded as programs for proof assistants, such as Agda, Coq, and
Lean.
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Jacobson rings (non-constructive)

Definition 1

A Jacobson ring is a ring such that every prime ideal is an
intersection of maximal ideals.

Example 1

All fields are Jacobson. The ring Z is Jacobson. The ring Q[[X]] is
not Jacobson.

Proposition 1

A ring A is Jacobson if and only if⋂
I ⊆ p ⊆ A: prime

p =
⋂

I ⊆ m ⊆ A: maximal

m

holds for all ideals I ⊆ A.
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The general Nullstellensatz (non-constructive)

Our main theorem provides a constructive version of the following
theorem:

Theorem 2 ([Goldman 1951, Theorem 3], [Krull 1951, Satz 1])

If A is Jacobson, then so is A[X].

Corollary 1

Let K be a field. For every ideal I of A := K[X1, . . . , Xn],

√
I =

⋂
I ⊆ p ⊆ A: prime

p =
⋂

I ⊆ m ⊆ A: maximal

m.

Classical proofs of the general Nullstellensatz use Zorn’s lemma
and the law of excluded middle.
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Why do we need Zorn’s lemma?

We use Zorn’s lemma to prove that there are enough
prime/maximal ideals (e.g., to prove

√
I =

⋂
I ⊆ p ⊆ A: prime p).

This is very useful. For example, we only have to prove that
x̄ =A/p 0 in domains A/p to prove that x ∈ A is nilpotent. Using
this argument, it is easy to prove that if anX

n + . . .+ a0 ∈ A[X]
is invertible, then a1, . . . , an ∈ A are nilpotent.

However, this argument is not constructive. We often must avoid
treating prime/maximal ideals directly in constructive algebra.
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Definition without prime/maximal ideals (1/2)

Definition 3

Let U ⊆ A. We define ideals NilU, JacU ⊆ A as follows:

NilU := {a ∈ A : ∃n ≥ 0. an ∈ ⟨U⟩},
JacU := {a ∈ A : ∀b ∈ A. 1 ∈ ⟨U, 1− ab⟩}.

Proposition 2 (non-constructive)

For every ideal I ⊆ A,

Nil I =
⋂

I ⊆ p ⊆ A: prime

p, Jac I =
⋂

I ⊆ m ⊆ A: maximal

m.

Proposition 3 (non-constructive)

A is Jacobson if and only if Jac I ⊆ Nil I holds for all ideals
I ⊆ A. Note that the converse inclusion always holds.
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Definition without prime/maximal ideals (2/2)

In constructive algebra, we use the following definition:

Definition 4 ([Wessel 2018, Section 2.4])

A ring A is called Jacobson if Jac I ⊆ Nil I holds for all ideals
I ⊆ A.

Example 2 (constructive)

All discrete fields are Jacobson. The ring Z is Jacobson. The latter
is not trivial ([Kuroki 2024, Example 2.9]).

A constructive proof that a ring A is Jacobson works as an
algorithm such that

its input is an ideal I of A, an element a of A, and a function
f : A → I ×A such that for any b ∈ A, if (i, c) = f(b), then
1 = i+ (1− ab)c, and

its output is a natural number n ≥ 0 such that an ∈ I.
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Main result

Theorem 5 ([Kuroki 2024, Theorem 3.9])

In constructive mathematics, if A is Jacobson, then so is A[X].

This theorem provides a solution to two questions on
MathOverflow [Werner 2017; Arrow 2021] and two open problems
[Lombardi 2023, 1.1, 1.2].

In constructive mathematics, although the definition of a Jacobson
ring has been proposed in [Wessel 2018, Section 2.4], Jacobson
rings are not well studied.

The main idea of the proof is to eliminate the use of
prime/maximal ideals from a non-constructive proof in [Emerton
2010].
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Dynamical method

We use a simple deductive system called the entailment relation to
simulate an argument about prime ideals. For example, we use an
entailment relation generated by the following axioms:

⊢ 0, a, b ⊢ a+ b, a ⊢ ax, ab ⊢ a, b, 1 ⊢ .

The axiom ab ⊢ a, b corresponds to “a prime ideal containing ab
contains a or b.”

Suppose that we want to prove that a ∈ Nil I. We can often
translate a classical proof of a ∈

⋂
I ⊆ p ⊆ A: prime p to a

constructive proof of U ⊢ a for some finite subset U ⊆ I. Then we
can use a constructive theorem a ∈ NilU ⇐⇒ U ⊢ a instead of
the non-constructive theorem Nil I =

⋂
I ⊆ p ⊆ A: prime p.
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Generalizing Emerton’s lemma

Let Aa := A[1/a].

Lemma 1 (non-constructive, [Emerton 2010, Lemma 6])

If A → B is an injection of domains such that A is Jacobson, and
for some a ∈ A \ {0}, the induced morphism Aa → Ba is integral,
then

⋂
m ⊆ B: maximalm = 0.

Lemma 2 (constructive, [Kuroki 2024, Lemma 3.6])

If A → B is a homomorphism of rings such that A is Jacobson,
and for an element a ∈ A, the induced morphism Aa → Ba is
integral, then a JacB J ⊆ NilB J holds for all ideals J ⊆ B.
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Summary and future work

Summary:

The general Nullstellensatz has a constructive proof.

Constructive proofs are programs.

Questions:

Are there any applications of the general Nullstellensatz in
constructive algebra?

Can constructive algebra help computer algebra?
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