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Hilbert’s basis theorem (HBT) is an important topic in constructive algebra. In
exploring constructive versions of HBT, several definitions of Noetherian rings have been
considered, including Richman–Seidenberg Noetherian rings [Ric74, Sei74, MRR88].
Among them, Jacobsson and Löfwall’s one [JL91] and Coquand and Persson’s one
[CP99] are (generalized) inductive definitions.

In this talk, we quantify the inductive definition and define α-Noetherian rings as
follows, where α is an ordinal (as a Cantor Normal Form):

1. A list [x0, . . . , xn−1] ∈ ListA is called (−1)-good (or simply good) if n ≥ 1 and
xn−1 ∈ ⟨x0, . . . , xn−2⟩.

2. A list [x0, . . . , xn−1] ∈ ListA is called α-good if for every x ∈ A, there exists
β ∈ [−1, α) such that [x0, . . . , xn−1, x] is β-good.

3. A ring A is called α-Noetherian if the empty list [] ∈ ListA is α-good.

Discrete fields are 1-Noetherian and Z is ω-Noetherian. We obtain the following con-
structive and quantitative version of HBT: if A is α-Noetherian, A[X] is (ω ⊗ α)-
Noetherian, where ⊗ denotes the Hessenberg natural product.

Another important topic in constructive algebra is the Krull dimension. Lombardi
[Lom02, Théorème 5] has obtained the following elementary characterization of the
Krull dimension: KdimA < n if and only if for all x0, . . . , xn−1 ∈ A, there exist
e0, . . . , en−1 ≥ 0 such that
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This characterization can be used as a definition of the Krull dimension in constructive
algebra [LQ15, Proposition XIII-2.8].

If a ring A is α-Noetherian for some α < ωn, then KdimA < n holds. Hence, the
quantitative HBT gives an alternative constructive proof of KdimK[X0, . . . , Xn−1] <
1 + n and KdimZ[X0, . . . , Xn−1] < 2 + n, where K is a discrete field.

Our results have already been proved in classical mathematics [Gul73, Bro03]. Clas-
sically, a ring A is α-Noetherian for some α < ωn if and only if A is Noetherian and
KdimA < n. We hope that the notion of α-Noetherian rings is useful for developing
the constructive dimension theory of Noetherian rings.
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