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What is a constructive proof?

A proof is often called constructive if we can extract some algorithm from it. One
typical way to make a proof constructive is to avoid non-constructive principles
such as Zorn’s lemma and the law of excluded middle.

Example 1. It is well known that there exist a, b ∈ R−Q such that ab ∈ Q. A typical
non-constructive proof says that (a, b) = (
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2,
√

2) or (a, b) = (
√

2
√

2
,
√

2) satisfies
the condition, but the proof by itself does not give an algorithm to determine which
one satisfies the condition. On the other hand, it is easy to obtain a constructive
proof that (a, b) = (

√
2, 2 log2 3) satisfies the condition.

Mathematics without non-constructive principles is often called neutral mathemat-
ics. Theorems in neutral mathematics hold in classical mathematics, and they also
hold in anti-classical mathematics, such as Brouwer’s intuitionistic mathematics
and Russian constructive mathematics.

· · · ≤ Neutral Math
≤ Classical Math (Math in ZF(C))
≤ Anti-classical Math (not compatible with Excluded Middle)

Why constructive mathematics?

I’m doing constructive mathematics because it is more comfortable. There are
some other reasons why people care about constructive mathematics:
1. A constructive proof works as an algorithm.
2. Constructive theorems hold in any toposes.

Constructive algebra

The main purpose of constructive algebra is to give a constructive proof of virtually
any theorem in algebra.

Example 2. One of the most important results in constructive algebra is the ele-
mentary characterization of the Krull dimension of a commutative ring. Lombardi
[5, Théorème 5] have proved that the following equivalences hold in ZFC:

dimA < 1 ⇐⇒ ∀x ∈ A. ∃e ≥ 0. xe ∈ 〈xe+1〉,
dimA < 2 ⇐⇒ ∀x1, x2 ∈ A. ∃e1, e2 ≥ 0. xe11 x

e2
2 ∈ 〈x

e1+1
1 , xe11 x

e2+1
2 〉,

dimA < n ⇐⇒ · · · .
In constructive algebra, we use these as the definition of the Krull dimension. Clas-
sical theorems such as dimA < n =⇒ dimA[X ] < 2n can be proved constructively
using this definition. See [7] for the constructive theory of the Krull dimension.

The general Nullstellensatz

Definition 1. Let A be a commutative ring and U ⊆ A. We define ideals
NilU, JacU ⊆ A as follows:

NilU := {x ∈ A : ∃n ≥ 0. xn ∈ 〈U〉},
JacU := {x ∈ A : ∀a ∈ A. ∃b ∈ A. 1− b(1− ax) ∈ 〈U〉}.

Proposition 1 (non-constructive). For every subset U ⊆ A, the following equalities
hold:

NilU =
⋂

U ⊆ p ⊆ A: prime

p, JacU =
⋂

U ⊆ m ⊆ A: maximal

m.

Goldman [1] and Krull [2] have independently introduced the notion of a Jacobson
ring to generalize Hilbert’s Nullstellensatz. In constructive algebra, the following
definition has been proposed by Wessel [9].

Definition 2. A ring A is called Jacobson if JacU ⊆ NilU holds for every subset U
of A.

Example 3. All 0-dimensional rings are Jacobson. The ring Z is Jacobson. The
ring Q[[X ]] is not Jacobson.

Remark 1. It is easy to prove that Z is Jacobson in ZF, but finding a constructive
proof is a non-trivial task. See [3, Example 2.9].

Theorem 1 (The general Nullstellensatz. [1, 2]). If A is Jacobson, then so is A[X ].

In [3], we have obtained a constructive proof of the general Nullstellensatz. Our
result provides a solution to the first two problems of [6].

Why do we need Zorn’s lemma in classical algebra?

We need Zorn’s lemma to prove that there are enough prime/maximal ideals (e.g.,
to prove NilU =

⋂
U ⊆ p ⊆ A: prime p). Some elementary theorems can be easily

proved with enough prime/maximal ideals. For example, we only have to prove
that x̄ =A/p 0 in domains A/p to prove that x ∈ A is nilpotent. Using this argument,
it is easy to prove that if anXn + . . . + a0 ∈ A[X ] is invertible, then a1, . . . , an ∈ A
are nilpotent.

How to convert a non-constructive proof into a
constructive one?

We can often obtain a constructive proof by considering a syntactic counterpart
of a classical proof.

nonconstructive proof

semantic argument
involving prime/maximal ideals

constructive proof

syntactic argument

We use a simple deductive system called the entailment relation generated by the
following axioms:

` 0, a, b ` a + b, a ` ax, ab ` a, b, 1 ` .
The axiom ab ` a, b corresponds to “a prime ideal containing ab contains a or b.”
Suppose that we want to prove that a ∈ NilU . We can often translate a classical
proof of a ∈

⋂
U ⊆ p ⊆ A: prime p to a constructive proof of U ′ ` a for some finite subset

U ′ ⊆ U . Then we can use a constructive theorem “a ∈ NilU ′ ⇐⇒ U ′ ` a” instead
of the non-constructive theorem “NilU =

⋂
U ⊆ p ⊆ A: prime p.” See [8] for details.

Towards a quantitative general Nullstellensatz

For convenience, we use classical mathematics in this section.
The constructive proof ([3, Example 2.9]) that Z is Jacobson can be seen as a
winning strategy of Prover for the games J2(Z, x) (x ∈ Z) defined as follows:
1. Let α be an ordinal, A be a ring, and x ∈ A. The game Jα(A, x) is played by two

players called Prover and Delayer.
2. A possible position of the game is a pair (τ, U) of an ordinal τ ≤ α and a finite

subset U of A.
3. The initial position of the game is (α, ∅).
4. Let (τ, U) be the current position.

• If τ > 0, then Prover declares a natural number n ∈ N and n elements
a1, . . . , an ∈ A. Then Delayer declares n elements b1, . . . , bn ∈ A. Then
Prover declares an ordinal τ ′ < τ . The next position is (τ ′, U ′), where
U ′ := U ∪ {1− bi(1− aix) : i ∈ {1, . . . , n}}.

• If τ = 0, then the game ends. Prover wins if x ∈ NilU . Delayer wins if x /∈ NilU .
In the game Jα(A, x), Prover is trying to give an elementary proof that (x ∈
JacU) → (x ∈ NilU) holds for all U . A ring A is called α-Jacobson if Prover
has a winning strategy for Jα(A, x) for all x ∈ A. The notion of α-Jacobson ring
will be useful for studying the computational aspects of Jacobson rings. See [4]
for details.
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