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What is constructive algebra?

Constructive algebra is algebra without non-constructive principles
(e.g., excluded middle (P ∨ ¬P ), Zorn’s lemma, ...).

Constructive proofs have computational content. They can be
regarded as programs for proof assistants, such as Agda, Coq, and
Lean.
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Myth

Myth: Algebra is constructive.
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Non-constructive proofs in algebra (1/2)

Let A be a ring. For a subset U ⊆ A, let

NilU := {x ∈ A : ∃e ≥ 0. xe ∈ ⟨U⟩},

where ⟨U⟩ denotes the ideal generated by U .

Theorem 1 (non-constructive)

⋂
U ⊆ p ⊆ A: prime

p = NilU.

We need enough prime ideals to prove this theorem.
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Non-constructive proofs in algebra (2/2)

An elementary application:

Theorem 2

If (amXm + · · ·+ a0)(bnX
n + · · ·+ b0) =A[X] 1, then

a1, . . . , am ∈ Nil 0.

Proof.

Let p ⊆ A be a prime ideal. Since

(amXm + · · ·+ a0)(bnX
n + · · ·+ b0) =(A/p)[X] 1,

the elements a1, . . . , am are zero in A/p. Hence

a1, . . . , am ∈
⋂

p ⊆ A: prime

p = Nil 0.

Can you extract an e ≥ 0 such that aei = 0 from this proof?
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How to constructivize?

The trick we have seen:

1 Proceed as if A were an integral domain. Deduce a = 0 (in an
elementary way).

2 Then you have a ∈ NilA 0.

Is this trick legitimate in constructive algebra?

Let’s see item 1 in detail.
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What are we doing? (1/4)

Let A be an integral domain.
How does (a2X

2+a1X+a0)(b2X
2+ b1X+ b0) = 1 imply a1 = 0?

Naive proof.

We have a2b2 = 0.

If a2 = 0, then a1b2 = 0.

If a1 = 0, then it’s ok.
If b2 = 0, then a1b1 = 0...

If b2 = 0, then a2b1 = 0.

If a2 = 0, then a1b1 = 0...
If b1 = 0, then a2b0 = 0.

If a2 = 0, then...
If b0 = 0, then 0 =A 1. Hence a1 = 0.
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What are we doing? (2/4)

(a2X
2 + a1X + a0)(b2X

2 + b1X + b0) = 1

is equivalent to

(a2b2 = 0) ∧ (a2b1 + a1b2 = 0)

∧ (a2b0 + a1b1 + a0b2 = 0)

∧ (a1b0 + a0b1 = 0) ∧ (a0b0 − 1 = 0)



How to constructivize? Jacobson rings Summary

What are we doing? (3/4)

S := {a2b2, a2b1 + a1b2, a2b0 + a1b1 + a0b2, a1b0 + a0b1, a0b0 − 1}.

Regard an element a ∈ A as the proposition “a is zero.”

a2b2 ⊢ a2b2
S ⊢ a2b2 a2b2 ⊢ a2, b2

(∗)
S ⊢ a2, b2

...
S, a2 ⊢ a1b2 a1b2 ⊢ a1, b2

(∗)
S, a2 ⊢ a1, b2

(∗)
S ⊢ a1, b2

...
S ⊢ a1

(∗): cut
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What are we doing? (4/4)

We are proving S ⊢ a1 in the following deductive system:

Rules:

a ⊢ a ,
U ⊢ V

U,U ′ ⊢ V, V ′ ,
U ⊢ V, a U ′, a ⊢ V ′

U,U ′ ⊢ V, V ′ (, Exc, Ctr).

Axioms:

⊢ 0, a, b ⊢ a+ b, a ⊢ ax, ab ⊢ a, b, 1 ⊢ .

Theorem 3 ([Johnstone 1982, Section V.3.2], [Schuster and Wessel
2021], constructive)

a1, . . . , am ⊢ b1 . . . bn is derivable iff b1 · · · bn ∈ Nil{a1, . . . , am}.

Hence S ⊆ {0} and S ⊢ a1 together implies a1 ∈ Nil 0. The trick
has been justified constructively.
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The completeness theorem

In the constructive justification of the trick, we have used

U ⊢ a ⇐⇒ a ∈ NilU.

In the non-constructive justification, we have used⋂
U ⊆ p ⊆ A: prime

p ⊆ NilU,

which says that

∀p ⊇ U. a ∈ p ⇐⇒ a ∈ NilU.

They are the same thing by the completeness theorem.

(Axioms: ⊢ 0, a, b ⊢ a+ b, a ⊢ ax, ab ⊢ a, b, 1 ⊢.)
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Jacobson rings, non-constructively

Definition 4

A ring A is called Jacobson if⋂
U ⊆ m ⊆ A: maximal

m ⊆
⋂

U ⊆ p ⊆ A: prime

p

holds for all U ⊆ A.

Example 1

All fields are Jacobson. The ring Z is Jacobson. The ring Q[[X]] is
not Jacobson.

Theorem 5 (the general Nullstellensatz, [Goldman 1951, Theorem
3], [Krull 1951, Satz 1])

If A is Jacobson, then so is A[X].
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Jacobson rings, constructively (1/2)

NilU := {x ∈ A : ∃e ≥ 0. xe ∈ ⟨U⟩},
JacU := {x ∈ A : ∀a ∈ A. ∃b ∈ A. 1− b(1− ax) ∈ ⟨U⟩}.

Proposition 1 (non-constructive)⋂
U ⊆ p ⊆ A: prime

p = NilU,
⋂

U ⊆ m ⊆ A: maximal

m = JacU.
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Jacobson rings, constructively (2/2)

Definition 6 ([Wessel 2018, Section 2.4])

A ring A is called Jacobson if JacU ⊆ NilU holds for all U ⊆ A.

Example 2 (constructive)

All discrete fields are Jacobson. The ring Z is Jacobson ([Kuroki
2024, Example 2.9]). The ring Q[[X]] is not Jacobson.

Theorem 7 ([Kuroki 2024, Theorem 3.9])

In constructive mathematics, if A is Jacobson, then so is A[X].

We have extracted the constructive proof from a classical proof
[Emerton 2010, Theorem 8]. This result solves problems on
MathOverflow [Werner 2017; Arrow 2021] and problems in
Lombardi’s list [Lombardi 2023, 1.1, 1.2].
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Z is Jacobson, non-constructively

Maximal ideals of Z are ⟨2⟩, ⟨3⟩, ⟨5⟩, ⟨7⟩, . . .
Prime ideals of Z are ⟨0⟩, ⟨2⟩, ⟨3⟩, ⟨5⟩, ⟨7⟩, . . .

If U ⊆ {0}, then⋂
U ⊆ m ⊆ A: maximal

m = 0 =
⋂

U ⊆ p ⊆ A: prime

p.

If U ̸⊆ {0}, then ⋂
U ⊆ m ⊆ A: maximal

m =
⋂

U ⊆ p ⊆ A: prime

p.
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Z is Jacobson, constructively

NilU := {x ∈ Z : ∃e ≥ 0. xe ∈ ⟨U⟩},
JacU := {x ∈ Z : ∀a ∈ Z. ∃b ∈ Z. 1− b(1− ax) ∈ ⟨U⟩}.

We have to prove ∀U. (x ∈ JacU) → (x ∈ NilU) for all x.
Let x := 6.

Prover Give me a b ∈ Z s.t. 1− b(1− 1 · 6) ∈ ⟨U⟩.
Delayer b = 4. So you have 21 ∈ ⟨U⟩.
Prover Give me a b ∈ Z s.t. 1− b(1− (−1) · 6) ∈ ⟨U⟩.
Delayer b = 2. So you have 15 ∈ ⟨U⟩.
Prover 6 = 21− 15 ∈ ⟨U⟩. So 6 ∈ NilU . I win.
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n-Jacobson rings

When A = Z, Prover has a winning strategy for this game. It’s
enough to make two queries, but the second depends on the
answer to the first.

Additional rules:

We allow Prover to make finitely many queries at once.

Prover can make queries at most n times.

A ring A is called n-Jacobson if Prover has a winning strategy for
the game.

Example 3

The ring Z is 2-Jacobson but not 1-Jacobson. All fields are
1-Jacobson but not 0-Jacobson.

Every n-Jacobson ring is Jacobson.
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A quantitative general Nullstellensatz

Theorem 8 ([Kuroki 2025, Corollary 25])

If A is n-Jacobson, then A[X] is (n+ 1)-Jacobson.

Example 4

Z[X1, . . . , Xn] is (2 + n)-Jacobson.

I think it’s difficult to prove this theorem without knowing the
constructive proof of the general Nullstellensatz.
Constructive methods may be useful even for non-constructivists.
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Summary

Algebra is constructive.
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