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What is constructive algebra?

Constructive algebra: Algebra without nonconstructive principles
(e.g., excluded middle, Zorn's lemma, ...).

Constructive proofs have computational content. They can be
regarded as programs for proof assistants.

Proof of In € N. ¢(n) ~» Algorithm to compute n s.t. p(n)



@ Classical proof
© Entailment relations

© Conservative extension

@ Summary



Classical proof
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0), classically

If es = g@s e, then s =gt or 1 =4 0.

Classical proof
By LEM, we can define f: S — A% by

o=, o

This map induces a homomorphism f : A9S 5 A5 Then we have
F(s)(t) = fles)(t) = Flen)(t) = F()(1) = 1.

o If s=1t, we have s =¢.

o If s #t, we have 0 = f(s)(t) = 1.
By LEM, we have s =t or 1 = 0. ]




Classical proof
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Constructivizing the proof

Some constructive proofs are collected in the following
MathOverflow discussion:

@ Constructively, is the unit of the “free abelian group” monad
on sets injective? https://mathoverflow.net/q/302516.

According to Blechschmidt, we can apply the baby version of
Barr's theorem (Friedman's translation).

In this talk, | will show a simple constructivization method using
entailment relations. (| believe that this method is essentially the
same as baby Barr.)


https://mathoverflow.net/q/302516

Entailment relations
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Entailment relations

Definition 2 (Lorenzen [1951], Scott [1971])

A binary relation | on the set of finite subsets of P is called an
entailment relation on P if |- satisfies the following conditions:
Uurv UpEV Uk V

ot UUFV,V' UU FV,V

The application of entailment relations to constructive algebra
dates back to Cederquist and Coquand [2000], Coquand and
Persson [2001] (The application of distributive lattices dates back
to Joyal [1975]).



Entailment relations
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Examples: Fg,F4

We define an entailment relation Fg on {Eqg(s,t) : s,t € S}.
Axioms of g:

- EqS(Svs)a EqS(Sat)7EqS(t7u) - EqS(Sau)a
Eq5(87 t) H EqS(t7 8)'

Proposition 1

o Uklg ©0y -y Pn—1 < Jk. U kg Pk -
o UltgEqg(s,t) <= s~yt.

Fs Eqg(s,t) <= s=t.

We define 4 similarly.



Entailment relations
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Example: =5 4

We define an entailment relation g 4 on {Eqg(s,t) : s,t € S} U
{Equ(a,b) : a,b e A}.
Axioms of =g 4: axioms of g and 4.

Proposition 2

Us,UatsaVs,Va < (UstgVgorUsbtaVy).

o Fg 4 Eqg(s,t) < s=t.
o Fs54 Eqy(a,b) <= a=0b.
o Fsa Eqg(s,t),Equ(l,0) < (s=torl=40).

We will extend g 4 conservatively.



Conservative extension
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Adjoining —

Theorem 3 (Lorenzen [1951], Cederquist and Coquand [2000])

We can conservatively adjoin {—y : ¢ € P} to an entailment
relation with the following axioms:

o, .

Proof sketch.

By induction,
Uy, ~Uy F- Vo, Vi = Up, Vi = Vo,U;  (Ug, Vi: negation-free).
L]




Conservative extension
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Key point: Adjoining f

Proposition 3

We can conservatively adjoin a function symbol f to =g 4 - with
the following axioms:

EqS('S?t) - EqA(f(Svt)7 1)a _‘EQS(Svt> - EQA(f('s?t)aO)a
"EqA(OZ,OZ), EQA(OZ,ﬂ),EQA(ﬁ,’}/) quA(aaFY)a
(a, B,y may contain f).

We use the fundamental theorem of entailment relation to prove
this.



Conservative extension
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Fundamental theorem of entailment relation

Theorem 4 (Lorenzen [1951], Cederquist and Coquand [2000])

We can conservatively adjoin connectives T, A\, L,V with the
following axioms:

ET, o, oAy, oAbEp, AP,
1k, obFeVYy, vEEVY, Ve

Proof sketch.

[U;vl:=UrV (UV: (T,A,L,V)-free),
[U, T;v] = [U;V],
[U, 0 Ag; V] =[U,0,9; V],
[U, L; V] := true,

[[U,(,O\/'(ﬁ, ]] o= [[Ua%v]] and [[U?¢aV]]7
Then, prove U Fprat V = [U; V] by induction. O




Conservative extension
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Adjoining f (proof)

Proposition 3

We can conservatively adjoin a function symbol f to =g 4~ with
the following axioms:

EqS(57 t) + EqA(f(Sa t)v 1)7 - EqS(Sv t) H EQA(f(Sv t)v O)a
H EqA(a’ (I), EqA(a’a b)7 EqA(b7 C) k= EqA(a’a C)a cee
(a,b,c may contain f).

V.

Proof sketch.

[o(f(s05t0)s - -+ s f(8n—1,tn—-1))]

= \/ (=" Bag(so,to) A+ -+ A =" Eqg(sn_1,tn-1)
i0,0in—1€{0,1}

N 90(1 - iOa 0009 - in—l))‘
Then, prove U kg 4 -5 V = [U] Fs.4,-pLat [V] by induction. [

€




Conservative extension
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Adjoining 44, -4

Proposition 5

We can conservatively adjoin a function symbol +',-" totg 4 -, ¢
with the following axioms:

FEqa(a, @), Eqa(e,B),Eqs(8,7) F Eqale,v), -,
Eq(e, 8) F Eqa(a+'y,84+"7), -,

FEqu(0+ a,a), FEqu(1 a,a), ... (a, 8,y may contain f,+',

FEqu(a+'b,a+b), FEqs(a-'bab) (a,be A).

4
Proof sketch.

[(f(s05t0); - - -5 f(8n—1,tn—-1))]

= \/ (=" Bag(so,to) A+ -+ A =" Eqg(sn_1,tn-1)
i0,-msin_1€{0,1}

Al —dg,..., 1 —ip_1)). (+," ~ +,-) O

™7 = ==
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Adjoining f (1/2)

Let Ag be the set generated by the following constructors:
ses T,y € Ag a €A, e Ag
es€As ' 0€As ' z4+ycAg’ ax € Ag '

Note that A9 = Ag/~, where ~ is generated by 0 + z ~ z,...

We adjoin elements of the form f(:r,lf) (x € Ag, t € S) and
extend +', -’ to elements containing f with the following axioms:

l_EqA(f(QSat)vf(svt))v I_E(1A<f(07t)7014)?
FEaa(f(z+y,1), fa,t) + f(x,1), F Eaa(f(az,t),a f(z,1)),
FEqu0+ a,a),... (a may contain f)



Conserva tive ex tension
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Adjoining f (2/2)

Proposition 6

We can conservatively adjoin f totsa- s (and extend +', ).

Proof sketch.




Conservative extension
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0), constructively

Proposition 7

If x = o5 y, then |_5,A7ﬁ7f,+/7,/7f EqA(fN(:Evt)a f(y,t)).

&

Proof Sketch.
Note that A®S = Ag/~, where ~ is the equivalence relation
generated by 0 + z ~ z,... OJ

.

Constructive proof of Theorem 1.

Suppose €5 =yas €. Thentg .o, s Eqs(f(es;t), flet,t)).
By simulating the classical proof on the entailment relation, we
have

Fs,A,ﬁ,f,y,./,f Eqg(s,t),Equ(1,0)

By the conservativity, we have g 4 Eqg(s,t), Eq,(1,0). Hence
(s =st)V(1=40) holds. L]

™ = = ==

V.




Summary
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Summary and future work

Using entailment relations, we can deal with ideal objects such as

fand f.

Future work: Combine this method with other applications of
entailment relations.
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