

Entailment relations for the constructive theory of free modules

Ryota Kuroki

The University of Tokyo

23 December 2025

Slides are available at

About me

Ryota Kuroki

Graduate student at the University of Tokyo.

- My supervisor: Ryu Hasegawa
- Research interest: constructive algebra

Slides are available at

What is constructive algebra?

Constructive algebra: Algebra without nonconstructive principles (e.g., excluded middle, Zorn's lemma, ...).

Constructive proofs have computational content. They can be regarded as programs for proof assistants.

Proof of $\exists n \in \mathbb{N}. \varphi(n) \rightsquigarrow \text{Algorithm to compute } n \text{ s.t. } \varphi(n)$

1 Classical proof

2 Entailment relations

3 Conservative extension

4 Summary

$(e_s = e_t) \Rightarrow (s = t) \vee (1 = 0)$, classically

Theorem 1

If $e_s =_{A^{\oplus S}} e_t$, then $s =_S t$ or $1 =_A 0$.

Classical proof.

By LEM, we can define $f : S \rightarrow A^S$ by

$$f(s)(t) := \begin{cases} 1 & \text{if } s = t, \\ 0 & \text{if } s \neq t. \end{cases}$$

This map induces a homomorphism $\tilde{f} : A^{\oplus S} \rightarrow A^S$. Then we have $f(s)(t) = \tilde{f}(e_s)(t) = \tilde{f}(e_t)(t) = f(t)(t) = 1$.

- If $s = t$, we have $s = t$.
- If $s \neq t$, we have $0 = f(s)(t) = 1$.

By LEM, we have $s = t$ or $1 = 0$.

Constructivizing the proof

Some constructive proofs are collected in the following MathOverflow discussion:

- *Constructively, is the unit of the “free abelian group” monad on sets injective?* <https://mathoverflow.net/q/302516>.

According to Blechschmidt, we can apply the baby version of Barr's theorem (Friedman's translation).

In this talk, I will show a simple constructivization method using entailment relations. (I believe that this method is essentially the same as baby Barr.)

Entailment relations

Definition 2 (Lorenzen [1951], Scott [1971])

A binary relation \vdash on the set of finite subsets of P is called an entailment relation on P if \vdash satisfies the following conditions:

$$\frac{}{\varphi \vdash \varphi}, \quad \frac{U \vdash V}{U, U' \vdash V, V'}, \quad \frac{U, \varphi \vdash V \quad U' \vdash \varphi, V'}{U, U' \vdash V, V'}.$$

The application of entailment relations to constructive algebra dates back to Cederquist and Coquand [2000], Coquand and Persson [2001] (The application of distributive lattices dates back to Joyal [1975]).

Examples: \vdash_S, \vdash_A

We define an entailment relation \vdash_S on $\{\text{Eq}_S(s, t) : s, t \in S\}$.

Axioms of \vdash_S :

$$\begin{aligned} \vdash \text{Eq}_S(s, s), \quad \text{Eq}_S(s, t), \text{Eq}_S(t, u) \vdash \text{Eq}_S(s, u), \\ \text{Eq}_S(s, t) \vdash \text{Eq}_S(t, s). \end{aligned}$$

Proposition 1

- $U \vdash_S \varphi_0, \dots, \varphi_{n-1} \iff \exists k. U \vdash_S \varphi_k.$
- $U \vdash_S \text{Eq}_S(s, t) \iff s \sim_U t.$

Corollary 1

$$\vdash_S \text{Eq}_S(s, t) \iff s = t.$$

We define \vdash_A similarly.

Example: $\vdash_{S,A}$

We define an entailment relation $\vdash_{S,A}$ on $\{\text{Eq}_S(s, t) : s, t \in S\} \cup \{\text{Eq}_A(a, b) : a, b \in A\}$.

Axioms of $\vdash_{S,A}$: axioms of \vdash_S and \vdash_A .

Proposition 2

$$U_S, U_A \vdash_{S,A} V_S, V_A \iff (U_S \vdash_S V_S \text{ or } U_A \vdash_A V_A).$$

Corollary 2

- $\vdash_{S,A} \text{Eq}_S(s, t) \iff s = t$.
- $\vdash_{S,A} \text{Eq}_A(a, b) \iff a = b$.
- $\vdash_{S,A} \text{Eq}_S(s, t), \text{Eq}_A(1, 0) \iff (s = t \text{ or } 1 =_A 0)$.

We will extend $\vdash_{S,A}$ conservatively.

Adjoining \neg

Theorem 3 (Lorenzen [1951], Cederquist and Coquand [2000])

We can conservatively adjoin $\{\neg\varphi : \varphi \in P\}$ to an entailment relation with the following axioms:

$$\varphi, \neg\varphi \vdash, \quad \vdash \varphi, \neg\varphi.$$

Proof sketch.

By induction,

$$U_0, \neg U_1 \vdash_{\neg} V_0, \neg V_1 \implies U_0, V_1 \vdash V_0, U_1 \quad (U_k, V_k: \text{negation-free}).$$

Key point: Adjoining f

Proposition 3

We can conservatively adjoin a function symbol f to $\vdash_{S,A,\neg}$ with the following axioms:

$$\begin{aligned} \text{Eq}_S(s, t) \vdash \text{Eq}_A(f(s, t), 1), \quad \neg \text{Eq}_S(s, t) \vdash \text{Eq}_A(f(s, t), 0), \\ \vdash \text{Eq}_A(\alpha, \alpha), \quad \text{Eq}_A(\alpha, \beta), \text{Eq}_A(\beta, \gamma) \vdash \text{Eq}_A(\alpha, \gamma), \dots \\ (\alpha, \beta, \gamma \text{ may contain } f). \end{aligned}$$

We use the fundamental theorem of entailment relation to prove this.

Fundamental theorem of entailment relation

Theorem 4 (Lorenzen [1951], Cederquist and Coquand [2000])

We can conservatively adjoin connectives $\top, \wedge, \perp, \vee$ with the following axioms:

$$\begin{aligned} &\vdash \top, \quad \varphi, \psi \vdash \varphi \wedge \psi, \quad \varphi \wedge \psi \vdash \varphi, \quad \varphi \wedge \psi \vdash \psi, \\ &\perp \vdash, \quad \varphi \vdash \varphi \vee \psi, \quad \psi \vdash \varphi \vee \psi, \quad \varphi \vee \psi \vdash \varphi, \psi. \end{aligned}$$

Proof sketch.

$$[\![U; V]\!] := U \vdash V \quad (U, V: (\top, \wedge, \perp, \vee)\text{-free}),$$

$$[\![U, \top; V]\!] := [\![U; V]\!],$$

$$[\![U, \varphi \wedge \psi; V]\!] := [\![U, \varphi, \psi; V]\!],$$

$$[\![U, \perp; V]\!] := \text{true},$$

$$[\![U, \varphi \vee \psi; V]\!] := [\![U, \varphi; V]\!] \text{ and } [\![U, \psi; V]\!], \dots$$

Then, prove $U \vdash_{\text{DLat}} V \Rightarrow [\![U; V]\!]$ by induction. □

Adjoining f (proof)

Proposition 3

We can conservatively adjoin a function symbol f to $\vdash_{S,A,\neg}$ with the following axioms:

$$\begin{aligned} \text{Eq}_S(s, t) \vdash \text{Eq}_A(f(s, t), 1), \quad \neg \text{Eq}_S(s, t) \vdash \text{Eq}_A(f(s, t), 0), \\ \vdash \text{Eq}_A(a, a), \quad \text{Eq}_A(a, b), \text{Eq}_A(b, c) \vdash \text{Eq}_A(a, c), \dots \\ (a, b, c \text{ may contain } f). \end{aligned}$$

Proof sketch.

$$\begin{aligned} & \llbracket \varphi(f(s_0, t_0), \dots, f(s_{n-1}, t_{n-1})) \rrbracket \\ &:= \bigvee_{i_0, \dots, i_{n-1} \in \{0,1\}} (\neg^{i_0} \text{Eq}_S(s_0, t_0) \wedge \dots \wedge \neg^{i_{n-1}} \text{Eq}_S(s_{n-1}, t_{n-1}) \\ & \quad \wedge \varphi(1 - i_0, \dots, 1 - i_{n-1})). \end{aligned}$$

Then, prove $U \vdash_{S,A,\neg,f} V \Rightarrow \llbracket U \rrbracket \vdash_{S,A,\neg,\text{DLat}} \llbracket V \rrbracket$ by induction. □

Adjoining $+'_A, \cdot'_A$

Proposition 5

We can conservatively adjoin a function symbol $+', \cdot'$ to $\vdash_{S, A, \neg, f}$ with the following axioms:

$$\vdash \text{Eq}_A(\alpha, \alpha), \quad \text{Eq}_A(\alpha, \beta), \text{Eq}_A(\beta, \gamma) \vdash \text{Eq}_A(\alpha, \gamma), \dots,$$

$$\text{Eq}_A(\alpha, \beta) \vdash \text{Eq}_A(\alpha +' \gamma, \beta +' \gamma), \dots,$$

$$\vdash \text{Eq}_A(0 +' \alpha, \alpha), \vdash \text{Eq}_A(1 \cdot' \alpha, \alpha), \dots \quad (\alpha, \beta, \gamma \text{ may contain } f, +', \cdot'),$$

$$\vdash \text{Eq}_A(a +' b, a + b), \quad \vdash \text{Eq}_A(a \cdot' b, ab) \quad (a, b \in A).$$

Proof sketch.

$$[\![\varphi(f(s_0, t_0), \dots, f(s_{n-1}, t_{n-1}))]\!]$$

$$:= \bigvee_{i_0, \dots, i_{n-1} \in \{0,1\}} (\neg^{i_0} \text{Eq}_S(s_0, t_0) \wedge \dots \wedge \neg^{i_{n-1}} \text{Eq}_S(s_{n-1}, t_{n-1})$$

$$\wedge \varphi(1 - i_0, \dots, 1 - i_{n-1})). \quad (+', \cdot' \rightsquigarrow +, \cdot) \quad \square$$

Adjoining \tilde{f} (1/2)

Let A_S be the set generated by the following constructors:

$$\frac{s \in S}{e_s \in A_S}, \quad \frac{}{0 \in A_S}, \quad \frac{x, y \in A_S}{x + y \in A_S}, \quad \frac{a \in A, x \in A_S}{ax \in A_S}.$$

Note that $A^{\oplus S} \cong A_S/\sim$, where \sim is generated by $0 + x \sim x, \dots$

We adjoin elements of the form $\tilde{f}(x, t)$ ($x \in A_S, t \in S$) and extend $+',.'$ to elements containing \tilde{f} with the following axioms:

$$\begin{aligned} & \vdash \text{Eq}_A(\tilde{f}(e_s, t), f(s, t)), \quad \vdash \text{Eq}_A(\tilde{f}(0, t), 0_A), \\ & \vdash \text{Eq}_A(\tilde{f}(x + y, t), \tilde{f}(x, t) +' \tilde{f}(y, t)), \quad \vdash \text{Eq}_A(\tilde{f}(ax, t), a \cdot' \tilde{f}(x, t)), \\ & \vdash \text{Eq}_A(0 +' \alpha, \alpha), \dots \quad (\alpha \text{ may contain } \tilde{f}) \end{aligned}$$

Adjoining \tilde{f} (2/2)

Proposition 6

We can conservatively adjoin \tilde{f} to $\vdash_{S, A, \neg, f, +', \cdot'}$ (and extend $+', \cdot'$).

Proof sketch.

$$[\![\tilde{f}(e_s, t)]\!] := f(s, t)$$

$$[\![\tilde{f}(0, t)]\!] := 0$$

$$[\![\tilde{f}(x + y, t)]\!] := [\![\tilde{f}(x, t)]\!] +' [\![\tilde{f}(y, t)]\!]$$

$$[\![\tilde{f}(ax, t)]\!] := a \cdot' [\![\tilde{f}(x, t)]\!].$$

$(e_s = e_t) \Rightarrow (s = t) \vee (1 = 0)$, constructively

Proposition 7

If $x =_{A^{\oplus S}} y$, then $\vdash_{S, A, \neg, f, +', .', \tilde{f}} \text{Eq}_A(\tilde{f}(x, t), \tilde{f}(y, t))$.

Proof Sketch.

Note that $A^{\oplus S} \cong A_S / \sim$, where \sim is the equivalence relation generated by $0 + x \sim x, \dots$

□

Constructive proof of Theorem 1.

Suppose $e_s =_{A^{\oplus S}} e_t$. Then $\vdash_{S, A, \neg, f, +', .', \tilde{f}} \text{Eq}_A(\tilde{f}(e_s, t), \tilde{f}(e_t, t))$. By simulating the classical proof on the entailment relation, we have

$$\vdash_{S, A, \neg, f, +', .', \tilde{f}} \text{Eq}_S(s, t), \text{Eq}_A(1, 0)$$

By the conservativity, we have $\vdash_{S, A} \text{Eq}_S(s, t), \text{Eq}_A(1, 0)$. Hence $(s =_S t) \vee (1 =_A 0)$ holds.

□

Summary and future work

Using entailment relations, we can deal with *ideal objects* such as f and \tilde{f} .

Future work: Combine this method with other applications of entailment relations.

References

Jan Cederquist and Thierry Coquand. Entailment relations and distributive lattices. In *Logic Colloquium '98 (Prague)*, volume 13 of *Lect. Notes Log.*, pages 127–139. Assoc. Symbol. Logic, Urbana, IL, 2000.

Thierry Coquand and Henrik Persson. Valuations and Dedekind's Prague theorem. *J. Pure Appl. Algebra*, 155(2-3):121–129, 2001. doi: 10.1016/S0022-4049(99)00095-X.

André Joyal. Les théorèmes de Chevalley-Tarski et remarques sur l'algèbre constructive. *Cahiers de topologie et géométrie différentielle*, 16(3):256–258, 1975. URL http://archive.numdam.org/item/CTGDC_1975__16_3_217_0/.

Paul Lorenzen. Algebraische und logistische Untersuchungen über freie Verbände. *J. Symbolic Logic*, 16:81–106, 1951. doi: 10.2307/2266681.

Dana Scott. On engendering an illusion of understanding. *The Journal of Philosophy*, 68:787–807, 1971. doi: 10.2307/2024952.