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What is constructive algebra?

Constructive algebra: Algebra without nonconstructive principles
(e.g., excluded middle, Zorn’s lemma, ...).

Constructive proofs have computational content. They can be
regarded as programs for proof assistants.

Proof of ∃n ∈ N. φ(n) ⇝ Algorithm to compute n s.t. φ(n)
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(es = et) ⇒ (s = t) ∨ (1 = 0), classically

Theorem 1

If es =A⊕S et, then s =S t or 1 =A 0.

Classical proof.

By LEM, we can define f : S → AS by

f(s)(t) :=

{
1 if s = t,

0 if s ̸= t.

This map induces a homomorphism f̃ : A⊕S → AS . Then we have
f(s)(t) = f̃(es)(t) = f̃(et)(t) = f(t)(t) = 1.

If s = t, we have s = t.

If s ̸= t, we have 0 = f(s)(t) = 1.

By LEM, we have s = t or 1 = 0.
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Constructivizing the proof

Some constructive proofs are collected in the following
MathOverflow discussion:

Constructively, is the unit of the “free abelian group” monad
on sets injective? https://mathoverflow.net/q/302516.

According to Blechschmidt, we can apply the baby version of
Barr’s theorem (Friedman’s translation).

In this talk, I will show a simple constructivization method using
entailment relations. (I believe that this method is essentially the
same as baby Barr.)

https://mathoverflow.net/q/302516
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Entailment relations

Definition 2 (Lorenzen [1951], Scott [1971])

A binary relation ⊢ on the set of finite subsets of P is called an
entailment relation on P if ⊢ satisfies the following conditions:

φ ⊢ φ ,
U ⊢ V

U,U ′ ⊢ V, V ′ ,
U, φ ⊢ V U ′ ⊢ φ, V ′

U,U ′ ⊢ V, V ′ .

The application of entailment relations to constructive algebra
dates back to Cederquist and Coquand [2000], Coquand and
Persson [2001] (The application of distributive lattices dates back
to Joyal [1975]).
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Examples: ⊢S,⊢A

We define an entailment relation ⊢S on {EqS(s, t) : s, t ∈ S}.
Axioms of ⊢S :

⊢ EqS(s, s), EqS(s, t),EqS(t, u) ⊢ EqS(s, u),

EqS(s, t) ⊢ EqS(t, s).

Proposition 1

U ⊢S φ0, . . . , φn−1 ⇐⇒ ∃k. U ⊢S φk.

U ⊢S EqS(s, t) ⇐⇒ s ∼U t.

Corollary 1

⊢S EqS(s, t) ⇐⇒ s = t.

We define ⊢A similarly.
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Example: ⊢S,A

We define an entailment relation ⊢S,A on {EqS(s, t) : s, t ∈ S} ∪
{EqA(a, b) : a, b ∈ A}.
Axioms of ⊢S,A: axioms of ⊢S and ⊢A.

Proposition 2

US , UA ⊢S,A VS , VA ⇐⇒ (US ⊢S VS or UA ⊢A VA).

Corollary 2

⊢S,A EqS(s, t) ⇐⇒ s = t.

⊢S,A EqA(a, b) ⇐⇒ a = b.

⊢S,A EqS(s, t),EqA(1, 0) ⇐⇒ (s = t or 1 =A 0).

We will extend ⊢S,A conservatively.
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Adjoining ¬

Theorem 3 (Lorenzen [1951], Cederquist and Coquand [2000])

We can conservatively adjoin {¬φ : φ ∈ P} to an entailment
relation with the following axioms:

φ,¬φ ⊢, ⊢ φ,¬φ.

Proof sketch.

By induction,

U0,¬U1 ⊢¬ V0,¬V1 =⇒ U0, V1 ⊢ V0, U1 (Uk, Vk: negation-free).
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Key point: Adjoining f

Proposition 3

We can conservatively adjoin a function symbol f to ⊢S,A,¬ with
the following axioms:

EqS(s, t) ⊢ EqA(f(s, t), 1), ¬EqS(s, t) ⊢ EqA(f(s, t), 0),

⊢ EqA(α, α), EqA(α, β),EqA(β, γ) ⊢ EqA(α, γ), . . .

(α, β, γ may contain f).

We use the fundamental theorem of entailment relation to prove
this.
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Fundamental theorem of entailment relation

Theorem 4 (Lorenzen [1951], Cederquist and Coquand [2000])

We can conservatively adjoin connectives ⊤,∧,⊥,∨ with the
following axioms:

⊢ ⊤, φ, ψ ⊢ φ ∧ ψ, φ ∧ ψ ⊢ φ, φ ∧ ψ ⊢ ψ,
⊥ ⊢, φ ⊢ φ ∨ ψ, ψ ⊢ φ ∨ ψ, φ ∨ ψ ⊢ φ,ψ.

Proof sketch.

[[U ;V ]] := U ⊢ V (U, V : (⊤,∧,⊥,∨)-free),
[[U,⊤;V ]] := [[U ;V ]],

[[U,φ ∧ ψ;V ]] := [[U,φ, ψ;V ]],

[[U,⊥;V ]] := true,

[[U,φ ∨ ψ;V ]] := [[U,φ;V ]] and [[U,ψ;V ]], ...

Then, prove U ⊢DLat V ⇒ [[U ;V ]] by induction.
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Adjoining f (proof)

Proposition 3

We can conservatively adjoin a function symbol f to ⊢S,A,¬ with
the following axioms:

EqS(s, t) ⊢ EqA(f(s, t), 1), ¬EqS(s, t) ⊢ EqA(f(s, t), 0),

⊢ EqA(a, a), EqA(a, b),EqA(b, c) ⊢ EqA(a, c), . . .

(a, b, c may contain f).

Proof sketch.

[[φ(f(s0, t0), . . . , f(sn−1, tn−1))]]

:=
∨

i0,...,in−1∈{0,1}

(¬i0 EqS(s0, t0) ∧ · · · ∧ ¬in−1 EqS(sn−1, tn−1)

∧ φ(1− i0, . . . , 1− in−1)).

Then, prove U ⊢S,A,¬,f V ⇒ [[U ]] ⊢S,A,¬,DLat [[V ]] by induction.
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Adjoining +′
A, ·′A

Proposition 5

We can conservatively adjoin a function symbol +′, ·′ to ⊢S,A,¬,f
with the following axioms:

⊢ EqA(α, α), EqA(α, β),EqA(β, γ) ⊢ EqA(α, γ), . . . ,

EqA(α, β) ⊢ EqA(α+′ γ, β +′ γ), . . . ,

⊢ EqA(0 +
′ α, α), ⊢ EqA(1 ·′ α, α), . . . (α, β, γ may contain f,+′, ·′),

⊢ EqA(a+
′ b, a+ b), ⊢ EqA(a ·′ b, ab) (a, b ∈ A).

Proof sketch.

[[φ(f(s0, t0), . . . , f(sn−1, tn−1))]]

:=
∨

i0,...,in−1∈{0,1}

(¬i0 EqS(s0, t0) ∧ · · · ∧ ¬in−1 EqS(sn−1, tn−1)

∧ φ(1− i0, . . . , 1− in−1)). (+′, ·′ ⇝ +, ·)
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Adjoining f̃ (1/2)

Let AS be the set generated by the following constructors:

s ∈ S
es ∈ AS

,
0 ∈ AS

,
x, y ∈ AS

x+ y ∈ AS
,

a ∈ A, x ∈ AS

ax ∈ AS
.

Note that A⊕S ∼= AS/∼, where ∼ is generated by 0 + x ∼ x,...

We adjoin elements of the form f̃(x, t) (x ∈ AS , t ∈ S) and
extend +′, ·′ to elements containing f̃ with the following axioms:

⊢ EqA(f̃(es, t), f(s, t)), ⊢ EqA(f̃(0, t), 0A),

⊢ EqA(f̃(x+ y, t), f̃(x, t) +′ f̃(x, t)), ⊢ EqA(f̃(ax, t), a ·′ f̃(x, t)),
⊢ EqA(0 +

′ α, α), . . . (α may contain f̃)
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Adjoining f̃ (2/2)

Proposition 6

We can conservatively adjoin f̃ to ⊢S,A,¬,f,+′,·′ (and extend +′, ·′).

Proof sketch.

[[f̃(es, t)]] := f(s, t)

[[f̃(0, t)]] := 0

[[f̃(x+ y, t)]] := [[f̃(x, t)]] +′ [[f̃(y, t)]]

[[f̃(ax, t)]] := a ·′ [[f̃(x, t)]].
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(es = et) ⇒ (s = t) ∨ (1 = 0), constructively

Proposition 7

If x =A⊕S y, then ⊢S,A,¬,f,+′,·′,f̃ EqA(f̃(x, t), f̃(y, t)).

Proof Sketch.

Note that A⊕S ∼= AS/∼, where ∼ is the equivalence relation
generated by 0 + x ∼ x,...

Constructive proof of Theorem 1.

Suppose es =A⊕S et. Then ⊢S,A,¬,f,+′,·′,f̃ EqA(f̃(es, t), f̃(et, t)).
By simulating the classical proof on the entailment relation, we
have

⊢S,A,¬,f,+′,·′,f̃ EqS(s, t),EqA(1, 0)

By the conservativity, we have ⊢S,A EqS(s, t),EqA(1, 0). Hence
(s =S t) ∨ (1 =A 0) holds.
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Summary and future work

Using entailment relations, we can deal with ideal objects such as
f and f̃ .

Future work: Combine this method with other applications of
entailment relations.
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