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What is constructive algebra?

Constructive algebra is algebra without nonconstructive principles
(excluded middle, Zorn’s lemma, ...).

We can extract computational content from a constructive proof.
One way of doing this is to use type theories with canonicity (e.g.
Martin-Löf type theory (using setoids), cubical type theory, ...).
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How to constructivize?

nonconstructive proof

semantic argument
involving ideal objects
(models, points, ...)

constructive proof

syntactic argument
(point-free)
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Entailment relations

Definition 1

A binary relation ⊢ on the set of finite multisubsets of S is called
an entailment relation on S if ⊢ satisfies the following conditions:

(id) a ⊢ a.

(wkn, ctr) (U ⊆ U ′, V ⊆ V ′, U ⊢ V ) =⇒ U ′ ⊢ V ′.

(cut) (U ⊢ V, a, U, a ⊢ V ) =⇒ U ⊢ V .

Here, U ⊆ U ′ denotes the subset inclusion (we do not care about
the multiplicity).
Entailment relations are closely related to distributive lattices
([Cederquist and Coquand 2000], [Lombardi 2020]).
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Completeness theorems (nonconstructive)

Definition 2

ν : S → 2 is called a model of ⊢ if ν satisfies the following
condition: U ⊢ V =⇒ ((∀u ∈ U. νu = 1) → (∃v ∈ V. νv = 1)).

Theorem 3 ([Scott 1974, Proposition 1.3])

The following are equivalent:

1 U ⊢ V .

2 For all models ν of ⊢, (∀u ∈ U. νu = 1) → (∃v ∈ V. νv = 1).
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Theory of prime ideals

We generate an entailment relation on a ring A by the following
constructors (axioms):

⊢ 0,

a, b ⊢ a+ b,

a ⊢ ax,

ab ⊢ a, b,

1 ⊢ .

The models of ⊢ correspond to prime ideals of A, so
U ⊢ a ⇐⇒ a ∈

⋂
p⊇U : prime p by the completeness theorem

(nonconstructively).
The purely syntactic statement “U ⊢ a ⇐⇒ a ∈

√
⟨U⟩” is

constructively provable. This constructivizes the classical theorem
“
⋂

p⊇U : prime p =
√
⟨U⟩”.
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A useful lemma

When we want to prove that “U ⊢ V implies something”, the
following lemma is useful.

Lemma 4 ([Wessel 2018, Lemma 4.34])

Let ⊢ be an entailment relation on S generated by constructors
(axioms) of the form U ⊢ V . Let Φ be a predicate on Powfin(S)
satisfying the following conditions:

U ⊆ U ′ =⇒ Φ(U) → Φ(U ′).

For all constructors of the form U ⊢ V , the following holds:
[∀U ′. (∀v ∈ V. Φ(U ′, v)) =⇒ Φ(U ′, U)] (Φ(U ′, v) means
Φ(U ′ ∪ {v})).

Then U ⊢ V implies [∀U ′. (∀v ∈ V. Φ(U ′, v)) =⇒ Φ(U ′, U)].
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Theory of chains of prime ideals

We generate an entailment relation on A× {0, . . . , n} by the
following constructors (axioms):

⊢ (0, k),

(a, k), (b, k) ⊢ (a+ b, k),

(a, k) ⊢ (ax, k),

(ab, k) ⊢ (a, k), (b, k),

(1, k) ⊢ ,

(a, k) ⊢ (a, k + 1).

The models of ⊢ correspond to the chains of prime ideals
P0 ⊆ · · · ⊆ Pn of A.
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Definition of the Krull dimension

Classically, we have

∀a1, . . . , an ∈ A. (a1, 1), . . . , (an, n) ⊢ (a1, 0), . . . , (an, n− 1)

⇐⇒ ¬(∃a1, . . . , an ∈ A. (there exists a chain of prime ideals

P0 ⊆ · · · ⊆ Pn such that ak ∈ Pk − Pk−1 for all k))

⇐⇒ ¬(there exists a strictly increasing chain of prime ideals

P0 ⊊ · · · ⊊ Pn)

⇐⇒ KdimA < n
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An elementary characterization of ⊢

Theorem 5 ([Coquand and Lombardi 2003, Theorem 3.5])

The following are equivalent:

1 (U0, 0), . . . (Un, n) ⊢ (V0, 0), . . . , (Vn, n).

2 ∃ek ∈ N|Vk|. V e0
0 · · ·V en

n ∈ ⟨U0, U1V
e0
0 , . . . , UnV

e0
0 · · ·V en−1

n−1 ⟩.

Here, (Uk, k) := {(u, k) : u ∈ Uk}, {v1, . . . , v|Vk|}
ek :=

∏
i v

ek,i
i ,

and Uv := {uv : u ∈ U}.
Using lemma 4, we can prove this directly (Let
Φ((W0, 0), . . . (Wn, n)) be the proposition
∃ek. V e0

0 · · ·V en
n ∈ ⟨W0,W1V

e0
0 , . . . ,WnV

e0
0 · · ·V en−1

n−1 ⟩).
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An elementary characterization of the Krull dimension

Corollary 6 ([Coquand and Lombardi 2003, Corollary 3.6])

The following are equivalent:

1 KdimA < n.

2 ∀a1, . . . , an ∈ A. ∃e1, . . . , en ≥ 0. ae11 · · · aenn ∈
⟨ae1+1

1 , ae11 ae2+1
2 , . . . , ae11 · · · aen+1

n ⟩.
3 For all a1, . . . , an ∈ A, there exists a polynomial

P ∈ A[X1, . . . , Xn] such that the coefficient of its lowest
degree term (with respect to the lexicographic order) is 1 and
P (a1, . . . , an) = 0.

The relation between (Krull/valuative) dimension and monomial
orders has been studied in [Kemper and Viet Trung 2014; Kemper
and Yengui 2020]. These results are purely new (not known even
classically).
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Constructive results

The following results are constructively provable (see [Lombardi
and Quitté 2015]):

KdimZ < 2.

If KdimA < n and a ∈ A is regular, then KdimA/⟨a⟩ < n− 1
(n ≥ 1).

If KdimA < n, then KdimA[X1, . . . , Xm] < (m+ 1)n.

It is not known if the following classical result is constructively
provable:

If A is Noetherian and KdimA < n, then VdimA < n.

The following result cannot be proved constructively:

KdimQ[[X]] < 2 (since this implies the limited principle of
omniscience. Let a1 := X, a2 := Xn (n ∈ N∞) to see this).
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The dimension of Rees algebras (1/3)

For an ideal I ⊆ A, let A[It] :=
⊕

k≥0 I
ktk ⊆ A[t].

(I don’t know if the following theorem is already known (even
classically). Can we generalize this result?)

Theorem 7

If KdimA < 1, then KdimA[It] < 2.

A nonconstructive proof (1/3).

Let P0 ⊊ P1 ⊊ P2 be prime ideals of A[It],
f = amtm + · · ·+ a0 ∈ P1 −P0 and g = bnt

n + · · ·+ b0 ∈ P2 −P1.
Note that P0 ∩A = P1 ∩A = P2 ∩A. We will derive a
contradiction by induction on m+ n.

If m = 0 or n = 0, then f ∈ P1 ∩A ⊆ P0 or g ∈ P2 ∩A ⊆ P1.
This is a contradiction.
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The dimension of Rees algebras (2/3)

A nonconstructive proof (2/3).

If n ≥ m ≥ 1, then there exists h ∈ A[It] such that
deg(an−m+1

m g − hf) < m. We have an−m+1
m g − hf ∈ P2. So

an−m+1
m g − hf ∈ P1 must hold by the inductive hypothesis

(with (f, g) := (f, an−m+1
m g − hf)). So an−m+1

m g − hf ∈ P0

by the inductive hypothesis (with
(f, g) := (an−m+1

m g − hf, g)). So an−m+1
m g ∈ P1. So

am ∈ P1 ∩A ⊆ P0. Since KdimA ≤ 0, there exist k ≥ 0 and
x ∈ A such that akm = xak+1

m . So
(amtm)k = xam(amtm)k ∈ P0. So f − amtm ∈ P1 − P0. This
is a contradiction by the inductive hypothesis with
(f, g) := (f − amtm, g).
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The dimension of Rees algebras (3/3)

A nonconstructive proof (3/3).

If m ≥ n ≥ 1, then there exists h ∈ A[It] such that
deg(bm−n+1

n f − hg) < n and deg h < m. We have
bm−n+1
n f − hg ∈ P2. So bm−n+1

n f − hg ∈ P1 by the inductive
hypothesis with (f, g) := (f, bm−n+1

n f − hg). So
bm−n+1
n f − hg ∈ P0 by the inductive hypothesis with
(f, g) := (bm−n+1

n f − hg, g). So hg ∈ P1. So h ∈ P1. So
h ∈ P0 by the inductive hypothesis with (f, g) := (h, g). So
bm−n+1
n f ∈ P0. So bn ∈ P0. Since KdimA ≤ 0, there exist
k ≥ 0 and x ∈ A such that bkn = xbk+1

n . So
(bnt

n)k = xbn(bnt
n)k ∈ P0. So g − bnt

n ∈ P2 − P1. This is a
contradiction by the inductive hypothesis with
(f, g) := (f, g − bnt

n).
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A conservative extension

We can conservatively extend ⊢ by adding negative propositions
¬(a, k) and the following axioms:

(a, k),¬(a, k) ⊢,
⊢ (a, k),¬(a, k).

Using this extension, we can argue like “[Assume (f, 1), ¬(f, 0),
(g, 2), and ¬(g, 1). Then we get a contradiction.] So
(f, 1),¬(f, 0), (g, 2),¬(g, 1) ⊢. So (f, 1), (g, 2) ⊢ (f, 0), (g, 1).”
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