reading list

what I have to read

  1. Extracting programs from proofs (minicourse)
    Ingo Blechschmidt
    2024
  2. The stable rank of \mathbbZ[x] is 3
    Luc Guyot
    2024
  3. Maximal ideals in countable rings, constructively
    Ingo Blechschmidt, and Peter Schuster
    In Revolutions and revelations in computability, 2022
  4. Generalized spaces for constructive algebra
    Ingo Blechschmidt
    In Proof and computation II—from proof theory and univalent mathematics to program extraction and verification, 2022
  5. Syntax for semantics: Krull’s maximal ideal theorem
    Peter Schuster, and Daniel Wessel
    In Paul Lorenzen—mathematician and logician, 2021
  6. Isomorphisms between cylinders over Danielewski surfaces
    Lucy Moser-Jauslin, and Pierre-Marie Poloni
    Beitr. Algebra Geom., 2021
  7. Valuative dimension and monomial orders
    Gregor Kemper, and Ihsen Yengui
    J. Algebra, 2020
  8. Zariski Cancellation
    Pedro Núñez
    2020
  9. An elementary and constructive proof of Grothendieck’s generic freeness lemma
    Ingo Blechschmidt
    2018
  10. Prime congruences of additively idempotent semirings and a Nullstellensatz for tropical polynomials
    Dániel Joó, and Kalina Mincheva
    Selecta Math. (N.S.), 2018
  11. Krull dimension and monomial orders
    Gregor Kemper, and Ngo Viet Trung
    J. Algebra, 2014
  12. Krull dimension of polynomial and power series rings
    John J. Watkins
    In Progress in commutative algebra 2, 2012
  13. The Transcendence Degree over a Ring
    Gregor Kemper
    2011
  14. Affine varieties with equivalent cylinders
    Vladimir Shpilrain, and Jie-Tai Yu
    J. Algebra, 2002
  15. Euler classes of inner product modules
    Maynard Kong
    J. Algebra, 1977
  16. Théorie de la dimension dans les anneaux de polynomes
    Paul Jaffard
    1960